

A MINIATURIZED MONOLITHIC DUAL BAND FILTER USING CERAMIC LAMINATION TECHNIQUE FOR DUAL MODE PORTABLE TELEPHONES

Hideyuki Miyake¹, Shoichi Kitazawa¹, Toshio Ishizaki²,
Toru Yamada² and Yoshitaka Nagatomi³

1:Matsushita Nittoh Electric Co., Ltd.; 55-12 Ohsumihama, Kyotanabe, Kyoto 610-03, Japan

2:Matsushita Electric Industrial Co., Ltd.; 1006 Kadoma, Osaka 571, Japan

3:Matsushita Electronic Components Co., Ltd.; 1006 Kadoma, Osaka 571, Japan

ABSTRACT

A miniaturized monolithic dual band filter is developed for dual mode portable telephones. By using ceramic lamination technique, 1mm-thick 900MHz filter and 1.9GHz filter are fabricated and stacked to be co-fired. The performance degradation due to the thickness and the dual band matching network are discussed. Experimental filter is constructed. It shows very good performance.

I. INTRODUCTION

Recently, portable telephones become very popular and various new systems, such as 900MHz digital cellular and 1.9GHz personal communication system, have been introduced. Each system has merit and demerit respectively. Thus we should select a system which meets our purpose. Another better solution is a dual mode telephone. This is very attractive for us to use it in various situations.

However, dual mode telephone requires new miniaturized components, because the volume of the hand set becomes two times as large as a single mode one by making in a conventional structure. A miniaturized monolithic dual band filter is one of key components to reduce the size of the hand set. A ceramic lamination technique[1, 2] is very important in this case, because very thin dielectric filter can be constructed successfully by using this technology.

The authors fabricated very small and 1mm-thick stripline filters for 900MHz band and 1.9GHz band. They are stacked to build up a 2mm-thick monolithic dual band filter. These two filters are co-fired simultaneously by ceramic lamination technique with ceramic green sheets and silver conductive paste.

So far, some stripline filters, diplexers

and LC chip filters have been reported[3]-[10]. However, such a monolithic structure is quite unique. It is necessary to overcome the difficulties to construct a low-insertion-loss filter of 1mm-thick triplate structure. Usually insertion loss might be increased, due to a narrow gap between two shield electrode layers. This paper describes the discussion for the insertion loss of the 1mm-thick planar filters and impedance matching network to create a dual pass band. Experimental filter is constructed and the performance will be demonstrated.

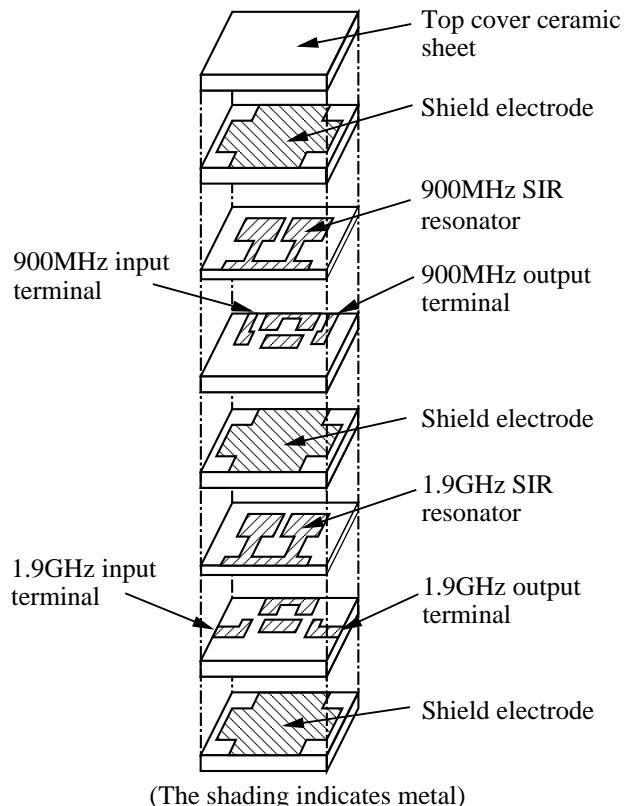
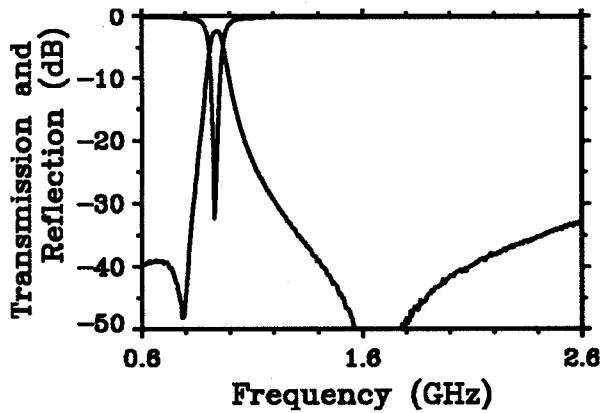
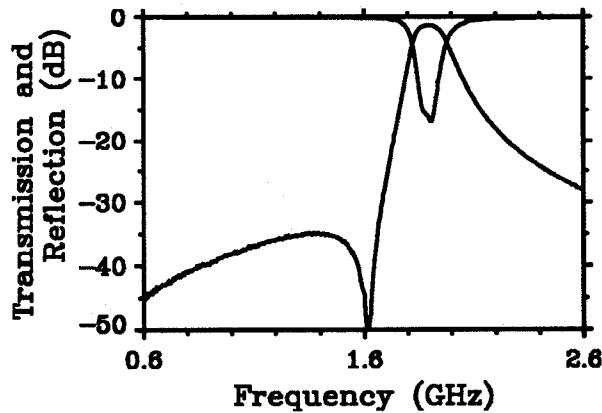
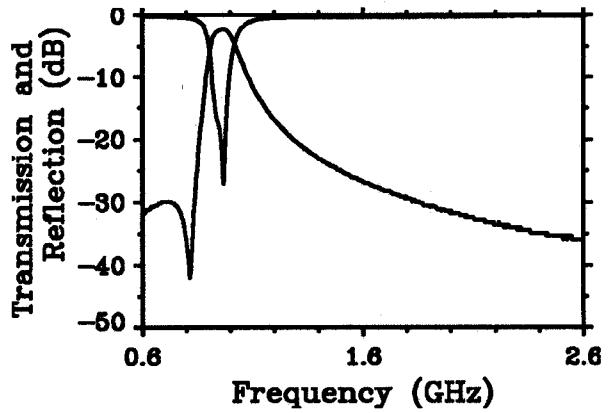
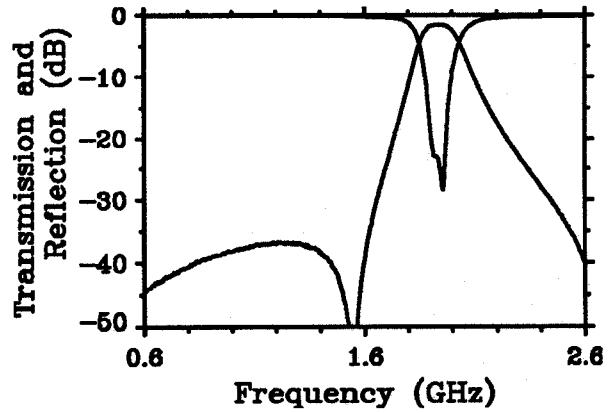




Fig. 1. Filter configuration of monolithic dual band filter

(a)



(b)


Fig. 2. Filter performance
 (a)2mm-thick 900MHz
 (b)2mm-thick 1.9GHz

II. FILTER CONFIGURATION

Figure 1 shows the filter configuration. This filter has two input terminals and two output terminals. The each filter presented here has basically a same filter equivalent circuit of [3]-[7]. The major difference is the thickness of 1mm. Here the insertion losses are compared with 2mm-thick conventional ones. Figure 2(a)-(d) show the performances. In fact, the insertion losses are slightly increased. But differences are not so significant owing to the optimization of the structure and the stripline patterns. Figure 3 shows the effect of SIR(Stepped Impedance Resonator) impedance stepping ratio versus unloaded Q's and resonance frequencies. Figure 4 shows the effect of a loaded capacitance on unloaded Q. The ceramic lamination technique could make it easy to change them, while it is very difficult for conventional coaxial approach. Therefore the authors could advantageously

(c)

(d)

(c)1mm-thick 900MHz
 (d)1mm-thick 1.9GHz

developed such a miniaturized filter in a short time first in the world.

III. IMPEDANCE MATCHING NETWORK

The filter is a two-in and two-out structure as mentioned. Thus some impedance matching network is required to create a dual pass band. Each filter has to be open at the pass band of its counterpart. Figure 5(a),(b) show the phase characteristics of each filter. The conventional technique requires LPF and HPF for each side. As a result, the total volume of the filter circuit could not be small. The matching circuit developed here is shown in Figure 6. The circuit is simplified by studying the phase characteristics of each filter intensively. Only one chip capacitor and one inductor are used in each side for phase shifting.

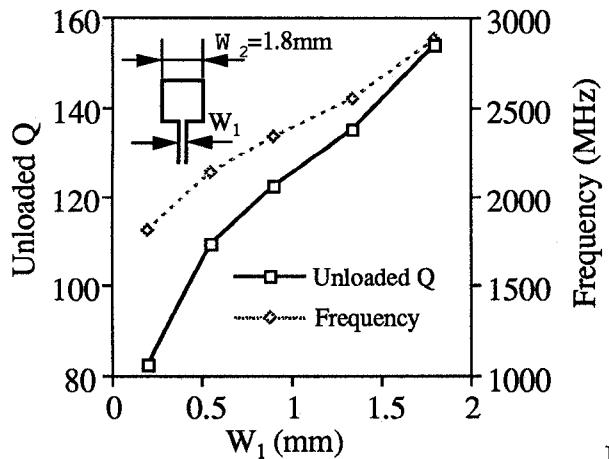
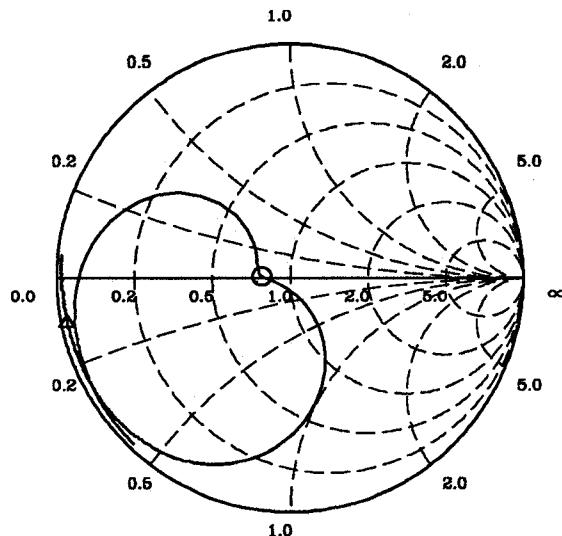
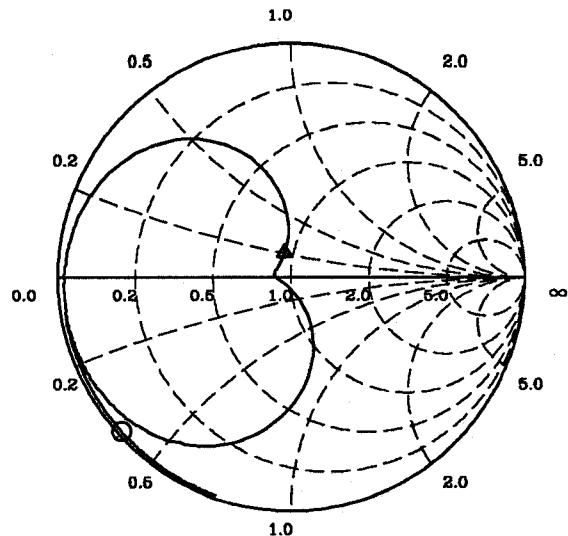


Fig. 3. SIR stepping ratio versus Q's and resonance frequencies


Fig. 4. Effect of loaded Capacitance on unloaded Q

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS


An experimental dual band filter is constructed in a monolithic structure. Two 1mm-thick planar filters are stacked and co-fired. The total dimensions are 3.2mm x 4.5mm x 2.0mm which is same as the conventional planar filter. Figure 7 shows the photograph of the dual band filter. The performance including matching network is shown in Figure 8. It exhibits an excellent performance for various dual mode portable telephones in 900MHz band and 1.9GHz band. Therefore very compact dual mode portable telephones will be developed in foreseeable future.

REFERENCES

- [1] H. Kagata, T. Inoue, J. Kato and I. Kameyama, "Low-fire bismuth-based dielectric ceramics for microwave use", Jpn. J. Appl. vol.31, part 1, No.9B, pp.3152-3155, September 1992.
- [2] H. Kagata, T. Inoue, J. Kato, I. Kameyama and T. Ishizaki, "Low-fire microwave dielectric ceramics and multilayer devices with silver internal electrode", Ceramic Trans., vol. 32, The American Ceramic Society Inc., pp.81-90, 1993.
- [3] T. Ishizaki, M. Fujita, H. Kagata, T. Uwano and H. Miyake, "A very small dielectric planar filter for portable telephones", 1993 IEEE MTT-S Digest, H-1, pp.177-180, 1993.
- [4] T. Ishizaki and T. Uwano, "A stepped impedance comb-line filter fabricated by using ceramic lamination technique", 1994 IEEE MTT-S Digest, WE1C-4, pp.617-620, 1994.
- [5] T. Ishizaki, M. Fujita, H. Kagata, T. Uwano and H. Miyake, "A very small dielectric planar filter for portable telephones", IEEE Trans. Microwave Theory and Tech., vol. MTT-42, No.11, pp.2017-2021, November 1994.
- [6] T. Ishizaki, M. Fujita, H. Kagata, T. Uwano and H. Miyake, "A small laminated planar filter for use in compact portable telephones", Microwave Journal., vol. 38, No.10, pp.106-120, October 1995.
- [7] T. Ishizaki, T. Uwano and H. Miyake, "An extended configuration of a stepped impedance come-line filter", IEICE Trans. Electron., vol.E79-C, No.5, May 1996.
- [8] T. Nishikawa, "RF front end circuit components miniaturized using dielectric resonators for portable telephones", IEICE Trans., vol.E74, No.6, pp.1556-1562, June 1991.
- [9] Hsin-Chin Chang, Chin-Chih Yeh, Wei-Cheng Ku and Kuang-Chung Tao, "A multilayer bandpass filter integrated into rf module board", 1996 IEEE MTT-S Digest, WE2C-5, pp.619-622, 1996.
- [10] A. F. Sheta, J.P. Coupez, G. Tanné and S. Toutain and J.P. Bolt "Miniature Microstrip Stepped Impedance Resonator Bandpass Filters and Diplexers For Mobile Communications", 1996 IEEE MTT-S Digest, WE2C-2, pp.607-610 1996.

(a)

(b)

Fig. 5. Phase characteristics
(a)900MHz filter, (b)1.9GHz filter

— S_{11}
 ○ 900MHz
 △ 1.9GHz

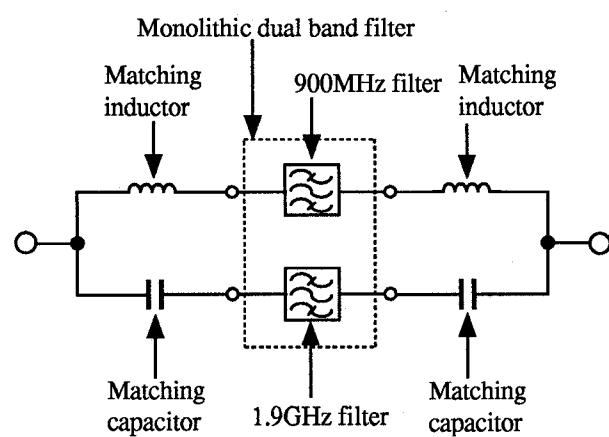


Fig. 6. Impedance matching network for dual band filter

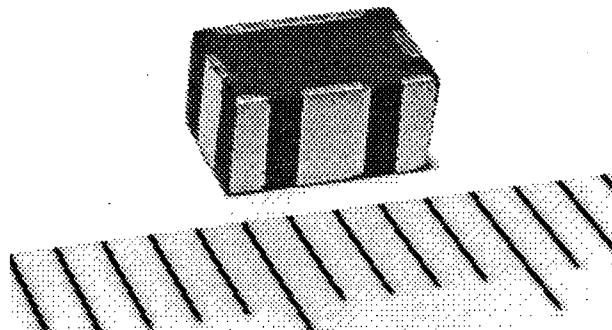


Fig. 7. Photograph of monolithic Dual Band Filter

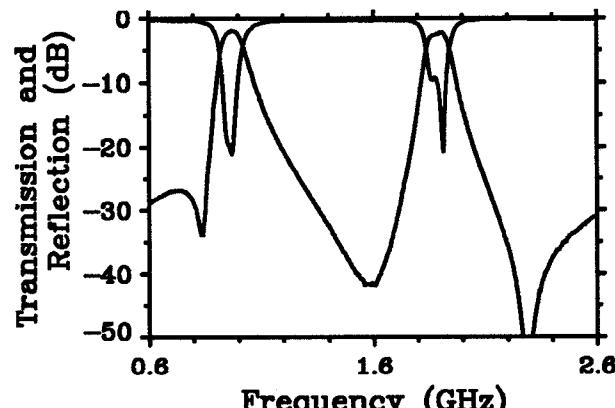


Fig. 8. Performance of monolithic dual band filter